亚洲va中文字幕无码毛片,久久久久久亚洲精品无码,久久久久久九九99精品,国产成人免费ā片在线观看,国产精品国产三级国产av剧情,国产精品久久久久aaaa,人妻久久久一区二区三区,久久精品国产精品亚洲艾草网,久久精品国产一区二区三区不卡,亚洲av毛片一区二区三区

<samp id="gccwo"></samp>
  • <ul id="gccwo"></ul>
  • 技術(shù)文章

    Technical articles

    當(dāng)前位置:首頁技術(shù)文章等離子體處理對(duì) 硅表面氧空位缺陷工程

    等離子體處理對(duì) 硅表面氧空位缺陷工程

    更新時(shí)間:2020-12-02點(diǎn)擊次數(shù):2629

    Electronic Supplementary Information For

    Surface oxygen vacancy defect engineering of p-CuAlO2 via Ar&H2 plasma

    treatment for enhancing VOCs sensing performances

    Bin Tong, a b Gang Meng, * a c Zanhong Deng, a c Mati Horprathum, d Annop

    Klamchuen e and Xiaodong Fang * a c

    aAnhui Provincial Key Laboratory of Photonic Devices and Materials, Anhui Institute of Optics and Fine

    Mechanics, Chinese Academy of Sciences, Hefei, 230031, China

    bUniversity of Science and Technology of China, Hefei 230026, China

    cKey Lab of Photovoltaic and Energy Conservation Materials, Chinese Academy of Sciences, Hefei

    230031, China

    d Opto-Electrochemical Sensing Research Team, National Electronic and Computer Technology Center,

    PathumThani 12120, Thailand

    eNational Nanotechnology Center, National Science and Technology Development Agency, Pathum

    Thani 12120, Thailand

     

    Experimental Section

    1.1 Synthesis of CuAlO2 particles

    First of all, 0.04 mol Cu(CH3COO)2·H2O (Alfa Aesar, 99.9%) was dissolved in 160 mL absolute alcohol with

    vigorous stirring, and then 16 mL HNO3 (Sinopharm Chemical Reagent, 99.7%), 0.2 mol C6H8O7·H2O

    (Sinopharm Chemical Reagent, 99.8%) and 0.04 mol Al[OCH(CH3)CH2CH3]3 (Alfa Aesar, 97%) were added into

    the above solution in sequence. After stirring for 6 hours, 16 mL HNO3 was added to the solution drop by drop to

    obtain a well-mixed precursor solution. The precursor solution was dried at 100 °C overnight. In order to remove

    the organics, the condensed solution was heated to 300 °C for 6 hours. After that, the dried powders were milled

    for 24 h using a planetary ball miller and then annealed at 1100 °C for 10 h under air atmosphere. Subsequently,

    the powders were reground and heated to 950 °C under flowing N2 atmosphere for 6 hours to form delafossite

    CuAlO2 particles. To ensure the pure phase of delafossite CuAlO2, trace (excess) CuxO was washed with 1 M

    diluted hydrochloric acid, 11 deionized water and absolute alcohol in sequence several times, and the final products

    were dried in an oven at 80 °C for 24 h.

    1.2 Fabrication of CuAlO2 sensors

    The CuAlO2 slurry was prepared by dispersing the powders in appropriate isopropyl alcohol. CuAlO2 sensors

    were prepared by brushing the above paste onto a thin alumina substrate with micro-interdigital Pt electrodes.

    CuAlO2 films on slide glass substrates were fabricated simultaneously for characterization. After naturally drying,

    the CuAlO2 sensors and films were heated at 350 °C under flowing air atmosphere for 3 hours. Afterwards, the

    samples were treated by Ar&H2 plasma in KT-S2DQX (150 W, 13.56 MHz, (鄭州科探儀器設(shè)備有限公司)) plasma etching system

    at 10 sccm 4% H2 in Ar and the pressure of ~ 99.8 Pa for 30 min, 60 min and 90 min, herein are referred to as

    pristine, PT-30, PT-60 and PT-90.

    1.3 Characterization and gas sensing test

    CuAlO2 samples were characterized by X-ray diffraction (XRD, Rigaku Smartlab), scanning electron

    microscope (SEM, VEGA3 TESCAN), field emission high resolution transmission electron microscope

    (HRTEM, Talos F200X), X-ray photoelectron spectroscopy (XPS, Thermo Scientific Esca Lab 250Xi

    spectrometer ), photoluminescence (PL, JY Fluorolog-3-Tou) and Electron spin resonance (ESR, JEOL, JES

    FA200 ESR spectrometer ). Mott-Schottky measurements were carried out on an electrochemical work-station

    (Zahner Company, Germany) in 1M NaOH solution (pH=12.5) with frequency of 5000 Hz. Platinum sheet,

    Ag/AgCl electrode and pristine/ PT-30 CuAlO2 samples were used as counter electrode, reference electrode and

    work electrode, respectively. Gas sensing tests were examined in SD101 (Hua Chuang Rui Ke Technology Co.,

    Ltd.) sensing system. The response was defined as ΔR/Ra, ΔR = Rg Ra, where Ra and Rg are sensor resistance in

     

    flowing drying air and synthetic VOCs, respectively. During gas sensing test, the total flow rate of the dry air and

    VOCs gas were adjusted to be 1000 sccm by mass flow controllers (MFCs).

     

    Fig. S1. Cross-sectional SEM image of typical CuAlO2 sensors. The inset shows a low-magnification image.

    The sensing layer is comprised of loosely packed CuAlO2 particles, with a thickness of ~ 15 μm

     

     

    Fig. S2. XRD patterns of pristine and Ar&H2 plasma treated CuAlO2 sensors. Ar&H2 plasma treatment didn’t

    cause any detectable impurity phase. All the samples show a 3R (dominent) and 2H mixed CuAlO2 phase.

     

    Fig. S3. SEM images of pristine (a) and Ar&H2 plasma treated PT-30 (b), PT-60 (c) and PT-90 (d) CuAlO2

    sensors. Except for 90 minitues treated sample (PT-90) with appearance of small nanodots, no obrvious change

    of surface morphology was obervered via Ar&H2 plasma treatment.

     中國科學(xué)技術(shù)大學(xué)   申請(qǐng)論文提名獎(jiǎng)CC - 2019 - SI - Surface oxygen vacancy defect engineering of p-CuAlO2 via Ar&H2 plasma treatment

    感謝中科大的論文    沒有發(fā)完  之后我在慢慢更新吧

    日韩一卡2卡3卡4卡新区亚洲| 377人体粉嫩噜噜噜| 日本少妇春药特殊按摩3| 熟妇激情内射com| 性猛交╳xxx乱大交| 国产v亚洲v天堂无码久久久| 少妇伦子伦精品无吗| 亚洲日本中文字幕天天更新| 国产日韩精品中文字无码| 激情偷乱人伦小说视频| 亚洲国产精品日韩专区av| 久久久久无码精品国产app| 丰满人妻一区二区三区视频53| av无码久久久久不卡网站下载| 免费a片看黄网站www| 亚洲av日韩av欧v在线天堂| 日本乱子人伦在线视频| 99v久久综合狠狠综合久久| 91精品国产成人免费网站| 久久国产中文字幕| 无码免费在线视频| 粗壮挺进人妻水蜜桃成熟漫画 | 国产美女免费观看| 久久无码一区二区三区少妇| 欧美大片一区二区| 欧美精品欧美人与动人物牲交| 国产精品麻豆va在线播放| 无码国产精品一区二区免费式芒果 | 久久一本人碰碰人碰| 国产青青偷自拍| 亚洲一本之道高清乱码| 精品久久久久久无码人妻| 日韩69永久免费视频| 欧美交a欧美精品喷水| 深夜爽爽动态图无遮无挡| 无码夜色一区二区三区| 新版天堂资源中文www连接| 亚洲中文字幕在线观看| 国产精品久久毛片| 永久免费av网站| 五月婷婷在线视频|