亚洲va中文字幕无码毛片,久久久久久亚洲精品无码,久久久久久九九99精品,国产成人免费ā片在线观看,国产精品国产三级国产av剧情,国产精品久久久久aaaa,人妻久久久一区二区三区,久久精品国产精品亚洲艾草网,久久精品国产一区二区三区不卡,亚洲av毛片一区二区三区

<samp id="gccwo"></samp>
  • <ul id="gccwo"></ul>
  • 技術(shù)文章

    Technical articles

    當(dāng)前位置:首頁技術(shù)文章等離子體處理對(duì) 硅表面氧空位缺陷工程

    等離子體處理對(duì) 硅表面氧空位缺陷工程

    更新時(shí)間:2020-12-02點(diǎn)擊次數(shù):3653

    Electronic Supplementary Information For

    Surface oxygen vacancy defect engineering of p-CuAlO2 via Ar&H2 plasma

    treatment for enhancing VOCs sensing performances

    Bin Tong, a b Gang Meng, * a c Zanhong Deng, a c Mati Horprathum, d Annop

    Klamchuen e and Xiaodong Fang * a c

    aAnhui Provincial Key Laboratory of Photonic Devices and Materials, Anhui Institute of Optics and Fine

    Mechanics, Chinese Academy of Sciences, Hefei, 230031, China

    bUniversity of Science and Technology of China, Hefei 230026, China

    cKey Lab of Photovoltaic and Energy Conservation Materials, Chinese Academy of Sciences, Hefei

    230031, China

    d Opto-Electrochemical Sensing Research Team, National Electronic and Computer Technology Center,

    PathumThani 12120, Thailand

    eNational Nanotechnology Center, National Science and Technology Development Agency, Pathum

    Thani 12120, Thailand

     

    Experimental Section

    1.1 Synthesis of CuAlO2 particles

    First of all, 0.04 mol Cu(CH3COO)2·H2O (Alfa Aesar, 99.9%) was dissolved in 160 mL absolute alcohol with

    vigorous stirring, and then 16 mL HNO3 (Sinopharm Chemical Reagent, 99.7%), 0.2 mol C6H8O7·H2O

    (Sinopharm Chemical Reagent, 99.8%) and 0.04 mol Al[OCH(CH3)CH2CH3]3 (Alfa Aesar, 97%) were added into

    the above solution in sequence. After stirring for 6 hours, 16 mL HNO3 was added to the solution drop by drop to

    obtain a well-mixed precursor solution. The precursor solution was dried at 100 °C overnight. In order to remove

    the organics, the condensed solution was heated to 300 °C for 6 hours. After that, the dried powders were milled

    for 24 h using a planetary ball miller and then annealed at 1100 °C for 10 h under air atmosphere. Subsequently,

    the powders were reground and heated to 950 °C under flowing N2 atmosphere for 6 hours to form delafossite

    CuAlO2 particles. To ensure the pure phase of delafossite CuAlO2, trace (excess) CuxO was washed with 1 M

    diluted hydrochloric acid, 11 deionized water and absolute alcohol in sequence several times, and the final products

    were dried in an oven at 80 °C for 24 h.

    1.2 Fabrication of CuAlO2 sensors

    The CuAlO2 slurry was prepared by dispersing the powders in appropriate isopropyl alcohol. CuAlO2 sensors

    were prepared by brushing the above paste onto a thin alumina substrate with micro-interdigital Pt electrodes.

    CuAlO2 films on slide glass substrates were fabricated simultaneously for characterization. After naturally drying,

    the CuAlO2 sensors and films were heated at 350 °C under flowing air atmosphere for 3 hours. Afterwards, the

    samples were treated by Ar&H2 plasma in KT-S2DQX (150 W, 13.56 MHz, (鄭州科探儀器設(shè)備有限公司)) plasma etching system

    at 10 sccm 4% H2 in Ar and the pressure of ~ 99.8 Pa for 30 min, 60 min and 90 min, herein are referred to as

    pristine, PT-30, PT-60 and PT-90.

    1.3 Characterization and gas sensing test

    CuAlO2 samples were characterized by X-ray diffraction (XRD, Rigaku Smartlab), scanning electron

    microscope (SEM, VEGA3 TESCAN), field emission high resolution transmission electron microscope

    (HRTEM, Talos F200X), X-ray photoelectron spectroscopy (XPS, Thermo Scientific Esca Lab 250Xi

    spectrometer ), photoluminescence (PL, JY Fluorolog-3-Tou) and Electron spin resonance (ESR, JEOL, JES

    FA200 ESR spectrometer ). Mott-Schottky measurements were carried out on an electrochemical work-station

    (Zahner Company, Germany) in 1M NaOH solution (pH=12.5) with frequency of 5000 Hz. Platinum sheet,

    Ag/AgCl electrode and pristine/ PT-30 CuAlO2 samples were used as counter electrode, reference electrode and

    work electrode, respectively. Gas sensing tests were examined in SD101 (Hua Chuang Rui Ke Technology Co.,

    Ltd.) sensing system. The response was defined as ΔR/Ra, ΔR = Rg Ra, where Ra and Rg are sensor resistance in

     

    flowing drying air and synthetic VOCs, respectively. During gas sensing test, the total flow rate of the dry air and

    VOCs gas were adjusted to be 1000 sccm by mass flow controllers (MFCs).

     

    Fig. S1. Cross-sectional SEM image of typical CuAlO2 sensors. The inset shows a low-magnification image.

    The sensing layer is comprised of loosely packed CuAlO2 particles, with a thickness of ~ 15 μm

     

     

    Fig. S2. XRD patterns of pristine and Ar&H2 plasma treated CuAlO2 sensors. Ar&H2 plasma treatment didn’t

    cause any detectable impurity phase. All the samples show a 3R (dominent) and 2H mixed CuAlO2 phase.

     

    Fig. S3. SEM images of pristine (a) and Ar&H2 plasma treated PT-30 (b), PT-60 (c) and PT-90 (d) CuAlO2

    sensors. Except for 90 minitues treated sample (PT-90) with appearance of small nanodots, no obrvious change

    of surface morphology was obervered via Ar&H2 plasma treatment.

     中國科學(xué)技術(shù)大學(xué)   申請(qǐng)論文提名獎(jiǎng)CC - 2019 - SI - Surface oxygen vacancy defect engineering of p-CuAlO2 via Ar&H2 plasma treatment

    感謝中科大的論文    沒有發(fā)完  之后我在慢慢更新吧

    亚洲精品国产精品乱码不卡 | 一本本月无码-| 99精品产国品一二三产区| 日本丰满人要无码视频| 国产乱人伦无无码视频试看| 欧美xxxx做受欧美| 国产av国片精品一区二区| 国产成人片无码视频在线观看| 国产综合成人久久大片91| 91视频人妻| 亚洲乱亚洲乱妇无码麻豆| 国产交换配乱婬视频| 国产成人综合久久精品| 久久综合丝袜日本网| 日本免费不卡高清网站| 亚洲男人第一av网站| 激情视频一区| 日韩人妻无码一区二区三区久久 | 日日碰狠狠添天天爽| 蜜桃麻豆www久久国产精品| 成熟人妻换╳╳╳╳| 精品人体无码一区二区三区| 粗大的内捧猛烈进出在线视频 | 少妇人妻偷人精品免费视频| 天天爽天天爽夜夜爽毛片| 18禁黄网站免费| 高潮内射免费看片| 欧美 丝袜 自拍 制服 另类| 精品九九人人做人人爱| 亚洲综合久久精品无码色欲| 国产精东天美av影业传媒| 无码av天天av天天爽| 国产成人精品自在线观看| 麻豆国产va免费精品高清在线| 俺也来国产精品欧美在线观看| 视频国产成人精品一区二区三区 | 国产三级精品三级| 人妻熟妇乱又伦精品视频app| 性色欲情网站| 99精品偷自拍| 久久精品国产网红主播|